Plant Genomics and Emerging Techniques

Jitendra P. Khurana

Inter-disciplinary Centre for Plant Genomics Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi-110021, India

Sequenced Plant Genomes

S. No.		Plant	Genome Size	Sequencing Technology	Reference
1		Arabidopsis thaliana	125 Mb	Sanger	AGI 2000 Nature 408:796-815
2		Oryza sativa	389 Mb	Sanger	IRGSP 2005 Nature 436: 793-800
3		Populus	550 Mb	Sanger	Tuskan et al. 2006 Science 313:1596-1604
4		Vitis	475 Mb	Sanger	Jaillon eat al. 2007 Nature 449: 463-467
5		Carica papaya	372 Mb	Sanger	Ming et al. 2008 Nature 452:991-997
6		Cucumber	367 Mb	Sanger + Illumina GA	Huang et al. 2009 Nat. Genet. 41: 1275-1281
7	No.	Sorghum	730 Mb	Sanger	Paterson et al. 2009 Nature 457: 551-556
8		Zea mays	2.3 Gb	Sanger	Schnable, et al. 2009 Science 326:1112-1115
9		Solanum tuberosum	840 Mb	Sanger + Illumina GA	Pre-publication draft release
10	000	Solanum lycopersicum	950 Mb	Sanger+ 454 + SOLiD	Pre-publication draft release

International Tomato Genome Sequencing Project

International Tomato Genome Sequencing Project

New Initiative

Whole Genome Sequencing using NextGen Sequencing Technologies

The technology		454	SOLID	
The countries and their commitment	Italy Netherlands France India Spain	10X 10X 10X 05X	15X 15X 30X	
Resources available	Whole genome shotgun library (The Netherlands and Italy) 3 kb/20 kb paired-end libraries (Roche)			
Data available	15X SOLiD and 454 data produced (Available at dedicated ftp site to the consortium)			
The new proposed resources	New physical map using HindIII, EcoRI and Mbol libraries (Keygene) New randomly-sheared insert BAC library (EU-SOL and US)			
Assembly	NextGen Seque	ences + BAC sequ xture (SBM) + BAC	ences (Sanger's) + Selected BA ends + fosmid ends	1C
Target				
deadline	Fir	st draft of tomato	genome by 2009 end	

Sequencing Technologies: A Comparison

		ABI 3730xl	454 Flx system	Solexa 1G	SOLiD
	Technology	Automated Sanger's di-deoxy	Emulsion PCR	Bridge PCR	Emulsion PCR
		Polymerase; Fluorescent-di- deoxy terminators	Polymerase; Pyrosequencing	Polymerase; Reversible terminators	Ligase; Octamer with two-base encoding
	Instrument cost (approx.)	US\$ 500,000	US\$ 550,000	US\$ 500,000	US\$ 591,000
2	Running cost/ Mb data	~US\$ 8,000	~US\$ 60	~US\$ 2	~US\$ 1
3	Data generated per run	50 Kb	500 Mb	1 Gb	6 Gb
4	Read length	500– 1000 bp	300 bp	36 bp	35 bp
5	Read pair information	Available	Available	Available	Available

Overview of Next Generation Sequencing applications in crop genetics and breeding

Varshney et al., 2009, Trends in Biotechnology

The map-based sequence of the rice genome

International Rice Genome Sequencing Project*

Vol 436, August 11, 2005

Pseudomolecules of the 12 rice chromosomes along with the participating nations responsible for sequencing each chromosome

Examples of agriculturally important genes isolated from rice

Locus or gene	Function	Identification method	
Xa21	Bacterial resistance	Map-based cloning	
Sub1	Submergence tolerance	Map-based cloning	
Moc1	Tillering number control	Map-based cloning	
Pi9	Fungal resistance	Map-based cloning	
Pi2	Fungal resistance	Map-based cloning	
Gid1, Gid2 or Slr1	Gibberellin signalling pathway	Map-based cloning	
Sd1	Gibberellin synthesis	Map-based cloning	
Lsi1	Silicon transport	Map-based cloning	
qSH1	Grain abscission control	Map-based cloning	
Spl18	Fungal resistance	Activation tagging	
Fon1	Tillering number control and the number of seeds	T-DNA	
Lhs	Floral organ formation and seed setting	T-DNA	
Udt1	Early anther development	T-DNA	
Xb3	Bacterial resistance	Yeast two-hybrid	
NH1	Bacterial resistance	Yeast two-hybrid	
NRR	Bacterial susceptibility	Yeast two-hybrid	

Control of Tillering in Rice

Li et al. (2003)

qSH1 is Required for Formation of the Abscission Layer at the Base of the Rice Grain

(Konishi et al. 2006)

A QTL for rice grain width and weight : RING-type E3 ubiquitin ligase

Song et al., 2007, Nat. Genet.

Control of rice grain-filling and yield by GRAIN INCOMPLETE FILLING 1 (GIF1)

Grain-filling and sugar content of *gif1* mutant and wild-type rice

INCREASED grain size and weight in transgenic rice overexpressing GIF1

Wang *et al.*, 2008, Nature Genetics

Sub1A, an Ethylene-response-factor-like Gene Confers Submergence Tolerance to Rice

Xu et al. (2006) Nature

Sub1 Region Gene Composition and Submergence induced mRNA Accumulation in Rice

Introgression of the FR13A *Sub1* Haplotype into an Intolerant Variety by MAS Confers Submergence Tolerance

NATIONAL CONSORTIUM FOR FUNCTIONAL GENOMICS OF RICE (NCFGR)

Gene Expression Profiling During Flower and Seed Development and Functional Validation of Identified Genes

Developmental Time-points (19) Under Investigation

Developmental Stages of Maximum Differential Expression Activity

(Gene Up-regulation in comparison to previous stage)

Rice Genome Analysis

Annotation and expression of *RLCK* gene family Rice genome database Global analysis of A20/AN1 zinc finger gene family Annotation and expression of Homeobox gene family Annotation and expression of *bZIP* gene family Annotation and expression of *TCS* gene family **Rice/Arabidopsis Genome Annotation** Intron-less genes of Rice/Arabidopsis Annotation and expression of *F-box* gene family Annotation and expression of ZOS gene family Annotation and expression of *MADS* box gene family Annotation and expression of *CDPK* gene family Annotation and expression of SAUR gene family Annotation and expression of *GH3* gene family Annotation and expression of AUX/IAA gene family Annotation and expression of *CRR* gene family Genome-wide analysis of the SAP gene family

Mol Plant	2008
NAR	2008
Func. & Integ. Genomics	2008
FEBS J	2008
Plant Physiol.	2008
Func. & Integ. Genomics	2007
Genome Research	2007
Func. & Integ. Genomics	2007
Plant Physiol.	2007
Plant Mol. Biol.	2007
BMC Genomics	2007
MGG	2007
Genomics	2006
Func. & Integ. Genomics	2006
Func. & Integ. Genomics	2006
BMC Plant Biol.	2006
MGG	2006

Expression Profiles of 69 Rice MADS Box Genes

(BMC Genomics, 2007)

Classification and domain organization of F-box proteins in rice

(Plant Physiology, 2007)

Subfamily	Domain content	No. in category	
FBX	Unknown/none	465	
FBDUF	DUF	66	
FBL	LRR	61	
FBK	Kelch	25	
FBD	FBD	17	
FBT	TUB	14	
FBLD	LRR and FBD	9	
FBA	FBA	4	
FBW	WD40	2	
FBO	Others	24	

Structural features in OsbZIP transcription factors

OsbZIP proteins having similar protein structure

Protein Structure

Determination of gene function by a COMBINATION of wholegenome transcriptome and predicted-pathway analysis

TILLING: Traditional mutagenesis meets functional genomics

SMALL NON-CODING RNAs : KEY REGULATORS WITH DIVERSE ROLES

Outlook for Future

- Sequencing/Re-sequencing of Indian crops
- Discovery of SNPs in Indian core germplasm
- Functional analysis of genes/alleles for traitspecific genetic enhancement
- Uncover relationship of genotype to phenotype in systems mode
- Genomics-assisted breeding
- Academia/Industry partnership

THANK YOU !

Our work is financially supported by the Department of Biotechnology and Department of Science and Technology, Government of India

